
 

 

 

  

Akshat Patni 

Mud Motor Failure Analysis using Data 
Science & Machine Learning Methods       

Department of Statistics & Data Science 

August 2021 



 

1 

Abstract 

 Land based directional drilling operations centered around oil and gas wells use 
sophisticated downhole drilling assemblies that are prone to stalls and failures. One such element 
of these drilling assemblies are mud motors, which are vulnerable to failures that compromise 
drilling operations. Previous research has used data analytics to quantify sources of damage to mud 
motors during drilling. However, there is still much that is yet to be understood in order to make a 
comprehensive algorithm that can act as an early warning system for mud motor failures in real 
time. The purpose of this project was to analyze factors that contribute to mud motor failures and 
advance the effort for creating a program to predict these failures. Data from surface sensors 
provided by an oil and gas operator was used to formulate a quality rating to evaluate active 
drilling periods. I applied this Q rating to datasets from 4 oil and gas wells provided by the 
operator and assessed the correlation between low quality drilling periods and instances of mud 
motor failure. Furthermore, using analysis from previous research regarding the influence of 
differential pressure spikes on mud motor failures, we examined the instances of these spikes in the 
available datasets and analyzed them in greater depth. The results of the Q rating study 
demonstrated inconsistent success in predicting mud motor failures, though still reveals key 
information regarding drilling halts that damage mud motors. The study of differential pressure 
spikes was significant, showing consistent patterns in almost all occurrences. These results allow 
operators to look into the events corresponding to differential pressure spikes and possibly prevent 
them. The work done in this project has advanced our understanding of what would go into a 
predictive program for mud motor failures, though further work is required to effectively develop 
this program.  

 

Introduction  

Background & Problem 

Mud motors are critical components of downhole drilling assemblies, and their failure 
during operation often leads to significant consequences such as downtime without productive 
drilling or the need for replacement. Mud motors connect directly to the drill bit and generate 
power during drilling to increase rotation speeds and the rate of penetration. There are multiple 
parts within mud motors such as the power section, connection subs to the drill string and drill bit, 
and a bearing assembly. However, the component that most commonly provokes mud motor 
failure due to wear and tear is the elastomer. An elastomer is a rubber seal that lines the stator 
within the power section of the motor as shown in Figure 1. Its purpose is to provide resistance to 
fatigue and abrasion forces to the power section during drilling, as well as protection against 
chemical degeneration. (Hendrik, 1997). Continuous operation of a mud motor degrades the 
elastomer due to corrosion from extended contact with mud and oil, as well as stress from 
excessive differential pressures. Extreme operating temperatures can also lead to thermal fatigue 
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that negatively affects the elastomer. All of these factors cause the elastomer to deteriorate 
(chunking) and compromise the integrity of its seal with the metal stator (debonding). (Gandikota, 
2016). 

 

  

Fig 1. Components of the power section of a mud motor, demonstrating the role of the 
elastomer in lining the stator.  

 

These outcomes are costly and disruptive to the drilling operation, requiring solutions that 
allow operators to predict and prevent these failures from occurring. Novel approaches have 
attempted to incorporate data science methods applied to sensor data to better understand mud 
motor failures and create solutions. It is possible to analyze high frequency data from downhole 
sensors, however this usage can be more complicated, costly, and time consuming. For the 
purposes of this project, more accessible information was preferred in the form of data from 
sensors at the surface of oil and gas wells.  

Prediction & Conclusion 
  
 The objective of this research project was to deepen our understanding of the factors that 
contribute to mud motor failures and advance the effort to create a comprehensive warning 
program that can be used to signal possible mud motor failures in real time. We hope to add to the 
factors that are included in a ‘cumulative damage index’ and be able to effectively apply it to any 
oil and gas well with consistent results.  

 The work we have completed thus far has achieved reasonable results, augmenting prior 
research that has been done on this topic. It would be possible to achieve more significant progress 
with additional data to test our hypotheses, including temperature data that has been missing from 
all datasets. Greater consideration can also be given to the disparity in conditions that exist in 
different wells, including the types of rock formations that are encountered during drilling. 
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Materials 

 I worked on this project as part of a university research group in conjunction with a drilling 
company that will remain unnamed for purposes of confidentiality. In order to perform analysis, 
this operator provided us with historical drilling datasets of 4 oil and gas wells. The names of these 
wells, as well as locations and other specific details will also remain confidential. The source of the 
data in each well came from surface sensors that measured various physical parameters relevant to 
the operation of the downhole drilling assemblies. The datasets contain labelled/structured time-
series data with a precision of 1 Hz. Each dataset contained over a million rows corresponding to 
several months of drilling operations. The relevant parameters in each dataset are listed below in 
Figure 2. The operator also provided us with daily drilling reports for each of the wells to give 
more comprehensive, qualitative details regarding their drilling operations.  

  

 

 

Fig 2. Relevant data channels provided in datasets for each of the four wells used in this study. 

 I used multiple softwares and programming libraries in order to perform analysis on the 
drilling datasets. All of the algorithms and data science applications were performed using Python 
and R Studio. The relevant data science libraries used include Pandas, NumPy, Matplotlib in 
Python and Dplyr, GGPlot2, and GLM in RStudio. Spotfire is an industry specific data 
visualization software that was used for initial visualization and overlay plotting. I also used Power 
BI for making more sophisticated visuals for presentation after analysis. Some of the algorithms 
that were utilized are sourced and adjusted from previous research projects for another operator in 
order to serve the purposes for this project.  

 

Methodology 

Data Transformation  

The first steps of the project were to transform the datasets and prepare them for subsequent 
analysis. The time-series data provided to us was continuous over a period of months. However, 
during operations at each well there are points where the bottom hole assembly (BHA) is switched 
out and the components are inspected, repaired, or replaced to better serve the next stage of drilling 
operations. In some of these instances, the mud motor is replaced before the operation of the next 
BHA commences. Therefore, it was necessary to separate the datasets into time sections that 

Block Position Top Drive RPM 
Bit Depth Top Drive Torque 
Date Total Depth 
Time Weight on Bit 
Flow In Differential Pressure 
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correspond to the operations of each distinct BHA. This was imperative to properly evaluate 
distinct uses of the mud motors and accurately isolate instances of mud motor failures.  

The procedure to separate these datasets consisted of opening the data in Spotfire for 
visualization, and locating the points where the bit depth went to ~0 ft indicating that they had 
pulled the assembly back to the surface and initiated a new BHA as demonstrated in Figure 3 
below. These timestamps were cross referenced with the daily drilling reports for the respective 
wells to confirm the day on which the BHA changed. I then sliced the datasets at the row indexes 
that matched each timestamp into separate dataframes using dplyr in RStudio. The date and time 
columns were then joined and converted into pd.datetime format in order to perform proper time 
series analysis.  

 

Fig 3. Visualization of where BHA changes occur in drilling datasets. CSV files are split at 
timestamps corresponding to drop in bit depth magnitude. 

 

Analysis of Q Rating 

Once these data transformation steps were completed, I was able to begin the analytical 
component of the project. In order to predict mud motor failures, we first had to identify adverse 
events during drilling that are hypothesized to cause damage to mud motors. During meetings with 
our team, the operator contemplated that periods of ineffective drilling create exceptional load on 
the drilling assembly and lead to wear and tear. These periods are characterized by active drilling 
operation of the assembly without a proportionate rate of penetration into the ground. This was 
expressed in the sensor data by periods where the magnitude of ‘Weight on Bit’ and ‘RPM’ were 
high, yet the rate of penetration stagnated near 0. This hypothesis was used to develop a quality or 
‘Q’ rating formula that would spike when active drilling coincided with poor penetration.  
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𝑄 =
(𝑊𝑒𝑖𝑔ℎ𝑡	𝑜𝑛	𝐵𝑖𝑡)!(𝑅𝑃𝑀)".$

𝑅𝑂𝑃
 

 In the Q rating formula above, both the ‘Weight on Bit’ and ‘RPM’ are empirical quantities 
yet ROP is a derived quantity. I applied an algorithm from work on a prior mud motor project to 
derive the ROP at any given point and append it as a new column in the dataframe. This function 
calculated ROP by taking the differences in block position during active drilling and converting the 
units into ft/hr. Subsequently, I used the formula above to loop through all of the BHA’s and 
calculate the Q rating as a new column derived from the columns of the other three variables.  

 Once the raw Q rating column was derived, there were multiple steps to filtering and 
smoothing the dataframes in order to make it suitable for analysis. Data from the sensors was fairly 
noisy and inconsistent. There were several instances where physical quantities such as ‘Weight on 
Bit’ and ‘RPM’ were recorded as negative values which is a physical impossibility. During the data 
cleaning process, I asserted negative values as ‘0’ and filtered out rows where the values were 
either ‘NA’ or ‘infinity’ to focus the analysis on periods of active drilling. 

 The post-filtered data still required smoothing to accurately express the Q rating, due to the 
noisiness of the sensor data. I tested and applied several different smoothing methods to the data 
and evaluated which method was the best to follow through with. The objective was to smooth the 
data to emphasize significant observations without over-smoothing the data to flatten out important 
spikes since the entire purpose of the Q rating is to reveal values that are significantly above the 
norm. Smoothing methods such as LOESS, kernel regression, and simple/exponential moving 
averages over-smoothed the data and flattened out significant spikes. LOESS and kernel regression 
also proved to be extremely computationally intensive on datasets of this size (>1 million rows) 
and were inefficient. Other methods such as FFT were not appropriately applicable because the 
data was not periodic.  

The most effective smoothing method proved to be the application of a Savitzky-Golay 
filter. This filter applies a least-squares fitted polynomial to the data within a fixed window size 
around each point. Since each of the spikes in the Q rating are defined by only a few points at a 
time, the Savitzky-Golay filter is advantageous to avoid over-flattening peaks. This method works 
well on data that is non-linear and non-periodic. Ultimately, the Savitzky-Golay filter had the best 
performance out of all of the methods to smooth the data while still preserving the significant 
spikes revealed by the Q rating. (Luo, 2005). 

After developing the algorithm to calculate the raw Q rating and incorporate the filtering 
and smoothing conditions, I applied it to all of the BHA’s in each well for analysis. I created an 
additional Boolean column in each well that returned as ‘True’ for all of the data points in the 
BHA’s that contained instances of mud motor failure (sourced from the daily drilling reports) and 
returned ‘False’ for the BHA’s that did not record any mud motor failures. I performed logistic 
regression analysis to determine whether high Q rating values correlated with instances of mud 
motor failure in each BHA. Logistic regression was used to evaluate the performance of the Q 
rating as a classifier between True/False cases of mud motor failure. I also plotted the Q Rating 
over time for each well in Power BI to visualize the metric and correlate whether or not BHA’s 
with mud motor failure contained high Q rating spikes.  
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Analysis of Differential Pressure Spikes 

 Previous research into mud motor failures explored the relationship between spikes in 
differential pressure during drilling and cumulative damage to mud motors leading to failure. The 
study demonstrated that a high quantity of differential pressure spikes are the most significant 
contributor to mud motor failures compared to other empirical parameters. (Lawal, 2021). 
However, this research only analyzed the quantity of differential pressure spikes in each BHA and 
did not examine individual differential pressure spikes in detail. I proceeded to expand on this line 
of research by investigating the location of all recorded spikes as well as analyzing patterns and 
trends that occur amongst other key parameters around each differential pressure spike.  

 For this analysis, we decided to narrow our scope of analysis from BHA’s in each well to 
individual drilling stands. Stands are sections of multiple pipes connected at joints in the well. 
Individual stands are expressed in the dataset as periodic variations in the ‘Block Position’ 
parameter, as demonstrated in Figure 4 below. We utilized a Python function from the previous 
mud motor failure study to label each data point with the stand number that it coincides with.  

  

 Fig 4. Example visualization of 3 separate drilling stands in a BHA. Stands are 
characterized by periodic movement in ‘Block Position’. Stands normally have a length of 
approximately ~90 ft demonstrated on the Y axis.  

 I also adapted the two functions from the previous mud motor study used to calculate and 
record the magnitude of every differential pressure spike in the dataset. Since these functions only 
focused on cataloging the total number of spikes and their magnitude, I was required to alter the 
functions and add multiple parameters to extract the timestamps of each differential pressure spike 
at its peak and append it to the dataframe. (Lawal, 2021). This allowed us to locate the spikes 
within the data and analyze them in depth, compared to other empirical parameters in each stand. 
We used Spotfire to visualize the stands that contained differential pressure spikes in greater detail.  
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Results & Discussion 

Analysis of Q Rating 

 Well #1 

  

Fig 5. Significant Q Rating spike in BHA #5, corresponding to mud motor failure. BHA #7 also 
had instance of mud motor failure yet was not signaled by high Q rating. Average Q rating values 
were highest in the BHA’s that contained instances of mud motor failure. 

 

 Well #2 

 

Fig 6. BHA #7 had instance of mud motor failure and contained highest density of Q rating spikes. 
This BHA also had 2nd highest average Q rating and highest cumulative Q rating.  
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 Well #3 

 

Fig 7. High Q values in BHA #2 and BHA #3 did not correspond to mud motor failure. BHA #5 
had instance of mud motor failure yet did not show high Q rating values. 

 Well #4 

 

Fig 8. Insufficient drilling depth in BHA #13 and BHA #19 to classify it as elastomer failure due to 
motor stalls. This well had faulty data and led to inconclusive application of Q rating.   

 

The Q rating visualization analysis demonstrated that the metric is inconsistent in its 
correlation with instances of mud motor failures across all wells. Its application performed 
adequately in wells #1 and #2, while it showed poor correlation in wells #3 and #4. Well #4 cannot 
be deemed as a conclusive application due to the fact that two of the BHA’s with mud motor 
failures had insufficient drilling depth to justify elastomer failure. Upon examination of the daily 
drilling reports, it was found that the mud motor failures were recorded before any active drilling 
operations took place. BHA’s with the highest average Q ratings tended to correlate with instances 
of mud motor failure, leading me to investigate whether average Q rating could function as an 
effective classifier to predict whether or not a mud motor would fail in a particular BHA across all 
wells. There were 42 rows of data corresponding to available BHA’s.  
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 Logistic Regression Analysis 

  

 

Fig 9. Logistic regression application demonstrates that average Q rating correlates significantly 
with binary mud motor failure outcomes (p value < .05). ROC evaluation of the model shows an 
AUC value of .75 which is passable but mediocre. Overall accuracy of prediction was about 85.7% 

  

Fig 10. Colored areas under curves represent probability of average Q rating accurately classifying 
BHA’s as true/false for instances of mud motor failure. Distinct colored areas represent probability 
of true negative/positive classifications, whereas overlapping areas represent probability false 
positives/negative classifications. 
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The results of the logistic regression analysis between average Q rating and outcomes of 
mud motor failure were fairly positive. The model showed a significant p value of .0283 and 
adequately passed ROC evaluation with good accuracy and acceptable AUC values. Figure 10 
demonstrates that the average Q rating model is more likely to classify true positive/negative cases 
of mud motor failure than incorrectly classify false positive/negative cases.  

Some of the limitations of the Q rating include the small sample size of BHA’s with mud 
motor failure that were available to test the performance of the Q rating. The surface sensor data 
was also very noisy and possibly faulty at some points, skewing the analysis of the correlation. 
Some of the instances of mud motor failure in the data were also not believed to be caused by 
elastomer failure, due to insufficient drilling. It would also be valuable to differentiate between the 
different rock formations that exist in different wells, as that has a significant impact on overall 
drilling operations and the patterns that appear in the data.  

While it cannot function as a standalone metric to predict mud motor failure, there is some 
valuable information that can be obtained from studying the components of the Q rating. For 
example, there are many periods of drilling in which the ‘Weight on Bit’ exceeds manufacturer 
recommendations, putting a great deal of stress on the drilling assembly that likely causes damage 
to the mud motor. Additionally, there are many periods where the drill is rotating and high weight 
on bit is applied yet the rate of penetration stalls. This is likely due to the fact that the drill bit 
encounters hard rock formations which prevent it from. Further analysis could be done to evaluate 
whether Q rating spikes coincide with differential pressure spikes.  

 

Analysis of Differential Pressure Spikes 
 

 
 
Fig 11. Locating high impact pressure spikes and overlaying with other parameters shows some 
trends. ‘Weight on Bit’ parameter tends to spike prior to differential pressure spikes.  
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Fig 12. Extracted timestamps of all high impact pressure spikes shows consistent trend that almost 
all spikes occur within first 10-15 minutes of each stand.   

The differential pressure spike analysis proved to be significant. Certain trends were found 
amongst confounding variables at the time of occurrence of high impact pressure spikes, such as a 
corresponding spike in the weight applied to the bit. Figure 12 also demonstrates across all plots 
that the ‘Top Drive RPM’ and ‘Top Drive Torque’ parameters begin to oscillate very strongly after 
differential pressure spikes as the drillers transition from rotary drilling to slide drilling.  

Analysis across 42 differential pressure spikes also demonstrated that 90% of the high 
impact pressure spikes occur within the first 10-15 minutes of drilling in each stand, with a mean 
of approximately 12 minutes. This is a significant observation that will certainly be considered in 
future use of differential pressure spikes to formulate a predictive damage index that signals mud 
motor failures. During our team meetings, it was hypothesized that these spikes could be caused by 
activation of the auto-driller unit. If that is the case, it is something that operators can directly 
target and aim to prevent during drilling operations.   
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